General Properties of Enzymes

e Enzymes differ from ordinary chemical catalysts in
reaction rate, reaction conditions, reaction specificity, and
control.

e The unique physical and chemical properties of the active
site limit an enzyme’s activity to specific substrates and
reactions.

e Some enzymes require metal ions or organic cofactors.



Catalytic Mechanisms

Amino acid side chains that can donate or accept protons can
participate in chemical reactions as acid or base catalysts: Acid-

base catalysis

Nucleophilic groups can catalyze reactions through the transient
formation of covalent bonds with the substrate: Covalent catalysis

In metal ion catalysis, the unique electronic properties of the metal
ion facilitate the reaction: Metal ion catalysis

Enzymes accelerate reactions by bringing reacting groups together
and orienting them for reaction: Proximity and orientation effects

Transition state stabilization can significantly lower the activation
energy for a reaction: Preferential binding of the transition state

complex




Lysozyme

e Model building indicates that binding to lysozyme distorts
the substrate sugar residue.

e Lysozyme’s active site Asp and Glu residues promote
substrate hydrolysis by acid—base catalysis, covalent
catalysis, and stabilization of an oxonium ion transition

state.
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Identification of Lysozyme Cleavage Site
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Destroys bacterial cell walls (peptidoglycan)

Hydrolyzing the B (1->4) glycosidic linkages from N-
acetylmuramic acid (NAM) to N-acetylglucosamine (NAG)

Also hydrolyzes B (1->4)-linked poly(NAG) (=chitin)
Bactericidal agent or helps dispose of killed bacteria

Hen egg white (HEW) lysozyme is the most studied.
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Lysozyme Reaction Mechanism
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Lysozyme: The Use of Transition State Analog Inhibitor
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Inhibitor used to verify covalent lysozyme intermediate



Serine Proteases

The catalytically active Ser, His, and Asp residues of serine
proteases were identified by chemical labeling and
structural analysis.

A binding pocket determines the substrate specificity of
the various serine proteases.

Serine proteases catalyze peptide bond hydrolysis via
proximity and orientation effects, acid—base catalysis,
covalent catalysis, electrostatic catalysis, and transition
state stabilization.

Zymogens are the inactive precursors of enzymes.



DIPF Irreversibly Inactivates Serine Proteases
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Affinity Labeling: Trypsin & Chymotrypsin
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Chymotrypsin

e During digestion, dietary proteins must be broken down into
small peptides by proteases.

e Chymotrypsin is one of several proteases that cuts peptides
at specific locations on the peptide backbone.

e This protease is able to cleave the peptide bond adjacent to

aromatic amino acids.
Chymotrypsin cuts this bond.
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Specificity Pockets of Serine Proteases
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Active Site Residues in Serine Proteases
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Mechanism of Serine Proteases
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Mechanism of Serine Proteases
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TS Stabilization in Serine Proteases
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Zymogens are activated by irreversible covalent
modification: blood coagulation cascade
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Specificity Pockets of Serine Proteases
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